SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu)
(Accredited by NBA & Accredited by NAAC with 'A' Grade)
(An ISO 9001:2008 Certified Institution)
Siddharth Nagar, Narayanavanam Road, PUTTUR-517 583

QUESTION BANK

Subject with Code: JP&R(16ME8817)

Sem: II-Sem

Course & Branch: M. Tech(TE)

Regulation: R16

UNIT -I

1	(a). What is gas turbine & Explain working principle of gas turbine	5M
	(b). A single gas turbine cycle works with a pressure ratio of 8. The compressor and	5M
	turbine inlet temperature are $300^{0}\mathrm{K}$ and $800^{0}\mathrm{K}$ respectively. If the volume flow	
	rate of air is 250 m ³ /sec. Compute the power output and thermal efficiency.	
2	(a). What is Combustor? Explain with neat sketches	5M
	(b). What is Turbo Machine? Types of Turbo Machines	5M
3	(a). What are the forces acting on an air vehicles and explain it?	5M
	(b). Explain the following terms: Climbing, Descending, Airflow over an aerofoil	5M
4	(a) Briefly explain open cycle Gas Turbine?	5M
	(b). A gas Turbine work between 750°C and 15°C Leaves the compressor at 6 bars	5M
	and 250°C. The maximum temperature raised in the combustion chamber is 667°C.	
	Calculate the thermal efficiency and Work ratio?	
5	(a). Explain types of Launch vehicles? And Explain forces acting on Vehicle	5M
	(b). Explain Multi stage Vehicle? Advantages and disadvantages?	5M
6	(a).Explain the about flight Performance? [1300]	5M
	(b).Briefly explains closed cycle Gas Turbine?	5M
7	(a).Briefly explain open cycle Gas Turbine?	5M
	(b).what is the space craft & Explain the space launch vehicles	5M
8	(a). Explain the following terms: Drag, Thrust, Lift, Blade Aero dynamics	5M
	(b). A seaplane of mass 20000 Kg is flying in straight and level flight. The thrust	5M
	vector is located 1.2m above the drag vector. If the Lift/Drag ratio is 5:1.	
	Calculate the position of the lift vector. Consider the forces on the tail plane to be	
	absent or negligible. Assume g=9.81m/sec ² .	

- A simple single stage rocket for a rescue flare has the following characteristics and its flight path nomenclature. Launch weight=18 N, mass of the propellent=0.185kN, specific impulse=120sec, launch angle = 80°, burn time=0.1sec, determine the following.
 - (i) Initial and final acceleration of powered flight
 - (ii) Time to reach maximum height
 - (iii) The maximum trajectory height
 - (iv) The distance to impact
 - (v)the angle at propulsion cutoff and at impact.

 Neglect wind and drag, take g=9.81m/sec²
- 10 (a). Explain the Layout of Turbo Jet Engines

5M

(b). Derive the Air flow over an Aero foil?

5M

UNIT – II

1	(a). What is the Principle of Jet propulsion and Rocketry?	SIVI
	(b). Classify any two Air Breathing Jet Engines?	5M
2	(a). What is the Rocket propulsion? Explain the liquid propellant rocket engine with	5M
	neat sketches	
	(b). Explain any two Classifications of Rocket Engines?	5M
3	(a). Explain the devices in a jet propulsion?	5M
	(b). An air craft flies at a speed of 52 kmph/hr at an altitude of 8000m. the diameter	5M
	propeller of an Air craft is 2.4 m and flight to jet speed ratio is 0.74 Find(i) The rate	
	of air flow to through the propeller (ii) Thrust produced (iii) specific Thrust	
4	(a)List and De brief the Efficiencies of the components of a Turbo jet Engine to	5M
	Evaluate the Performance?	
	(b) A Turbo jet engine inducts 51kg of air per second and propels an air craft with an	5M
	uniform flight speed of 912 km/hr. The isentropic anthology change for the nozzle	
	is 200 KJ/kg and its velocity co-efficient is 0.96. The fuel air ratio is 0.0119 the	
	combustion efficiency is 0.96 and the lower heating value of the fuel is 42 MJ/kg.	
	Calculate (i) Thermal Efficiency of engine (ii) Fuel flow rate in kg/hr and TSFC?	
5	(a). The speed of a turbojet is 800Kmph at an ambient pressure of 1.1 bar. The mass	5M
	flow rate of air is 15Kg/sec. the pressure of the gas entering the nozzle is 4 bar	
	and temperature is 300°C. Determine: Thrust, Thrust power and propulsive	
	efficiency. Take gama=1.4, R=287J/Kg°K,c _p =1.005	
	(b). Explain the Solid propellant rocket engine with neat sketches	5M
6	(a). Define critical pressure ratio in steam nozzles and Derive the critical pressure	5M
	ratio	
	(b). Explain and plot the effect of varying back pressure for a convergent divergent	5M
	nozzle	
7	(a). Deduce the expression of mass of discharge through nozzle	5M
	(b) The throat diameter of round sectioned nozzle is 0.6 cm, steam with and initial	5M
	pressure of 10 bar dry and saturated is expanded to 1.5 bar. What is the mass	
	flow rate and exit velocity?	
8	Air flows through a convergent –divergent nozzle and a shock wave forms in the	10M
	divergence at a point where the diameter is 350 mm. Measurements made on the	
	nozzle indicate that the pressure rises in the shock wave from 2 bar to 3 bar. The	
	temperature before the shock wave was calculated to be -10 ^o C.	

- (i) The Mach number just before the shock wave
- (ii) The rate of flow through the nozzle in kg/sec
- (iii) the temperature just after the shock wave
- 9 A air is isentropically expanded from $P_0=12$ bar, $T_0=520^{0}$ C in a nozzle to an exit 10M pressure of 7.5 bar. If the rate of flow of the air is 1.4Kg/sec. Calculate:
 - (i) Pressure, Temperature and velocity at the nozzle throat and exit
 - (ii) Maximum possible velocity
 - (iii) Type of nozzle
 - (iv)Throat area
- 10 A Turbo jet engine inducts 51kg of air per second and propels an air craft with an uniform flight speed of 912 km/hr. The isentropic anthology change for the nozzle is 200 kJ/Kg and its velocity co-efficient is 0.96. The fuel air ratio is 0.0119 the combustion efficiency is 0.96 and the lower heating value of the fuel is 42 MJ/Kg. Calculate
 - (i) Thermal Efficiency of engine
 - (ii) Fuel flow rate in kg/hr and TSFC?

SIDDHARTH INSTITUTIONS PUTTUR

EST D:3001

<u>UNIT – III</u>

1	What is the review of properties of mixture of gases and explain gibbs and Dalton	10M
	laws?	
2	(a). Write and Explain heat of formation?	5M
	(b). What is adiabatic flame temperature?	5M
3	(a)What is specific impulse?	5M
	(b).Write the frozen on aerogel?	5M
4	(a) Explain the equivalent ratio with an example?	5M
	(b) Explain the definition and formula for specific impulse?	5M
5	(a)Explain the frozen of aerogel?	5M
	(b)What are the applications of frozen of aerogel?	5M
6		5M
	(a) Write the gibbs law?	5M
	(b) Write and explain properties of mixture of gases?	
7	What is specific impulse and explain the units and diagram of specific impulse?	10M
8	(a) what is ment by heat of formation?	5M
	(b) write the adiabatic flame temperature?	5M
9	What is the properties of mixture of gases and explain the laws?	10M
10	(a) Write and explain dalton law? INSTITUTIONS	5M
	(b) what is equivalent ratio and explain?	5M
	VSTD:2001	

<u>UNIT – IV</u>

1	(a) explain the homogeneous propellants?	5M
	(b) Explain the heterogeneous propellants?	5M
2	What is solid propellant and explain its components?	10M
3	(a) Write the propellant characteristics?	5M
	(b) Explain the burning rate?	5M
4	(a) what are the burning rate measurements?	5M
	(b) What are the general characteristics and applications of double base solid propellants?	5M
5	(a) State and explain the steady state regimes and un steady state regimes?(b) What are the propellant charecteristics?	10M
6	(a) Explain the propellant grain, fuels, oxidizers, blinders, additives?	5M
	(b) Draw the diagram of several grain configurations?	5M
7	(a) explain the steady state regimes and un steady state regimes?	5M
	(b) What is composite propellants?	5M
8	(a) What are the solid rocket moter components and write thermal insulation and	5M
	ignition system? SIDDHARTH	5M
	(b) Write the propellant grain, fuels, oxidizers, blinders, additives and grain design?	
9	What is solid propellant and draw the diagram of basic solid roket moter?	10 M
10	(a) explain the homogeneous propellants?	
	(b) What is ment by composite propellants?	

<u>UNIT – V</u>

1	(a) Explain and draw the diagram of liquid propellant feed system?	5M
	(b) What are properties of liquid propellant?	5M
2	Explain and draw the diagram of turbo pump feed system and liquid propellant feed	10 M
	system?	
3	(a) write the classifications of liquid propellants?	10M
	(b) Write the properties of liquid propellant?	
4	(a) Explain the stream types with figures?	5M
•	(b) Explain the hypergolic propellants?	5111
5	(a) Explain the a.monopropellants b.bipropellants?	10M
	(b) What is ment by an turbo pump feed system?	
6	Explain ramjet engine and write the working principle of ramjet engine?	10M
7	Consider the following data for a ramjet engine airfuel ratio=60, altitude=6.5km	10M
	,c.v=45mj/kg diffusen inlet diameter=0.5m, diffusen efficiency=0.85, nozzle	
	efficiency=0.95, combustion efficiency=0.98,flight mach	
	number=4.0,r=1.4,R=0.287kj/kgk for both air and products of combustion. Take	
	properties of air at 6.5km altitude as 0.44atm,246k and density 0.624kg/m3	
	determine (a)flight speed (b)air and fuel consumption (c)diffusion pressure ratio	
	(d)maximaum temperature in the engine (e)nozzle pressure ratio and (f)ideal cycle	
	efficiency?	
8	Explain the two types of liquid feed system and properties?	10 M
9	(a) explain propulsive efficiency, thermal efficiency, overall efficiency?	5M
	(b) What is ment by propeller thrust?	
10	Draw and Explain ramjet engine and write the working principle of ramjet engine?	10M